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Abstract
In recent applications of algebraic topology to explore and analyze digital reconstructions of

neocortical microcircuitry developed at the Blue Brain Project, researchers have been able to

quantify the structural complexity of a neural network and its activity. Those results suggest

a correlation between the structural complexity and the functional complexity of a neural

network. In this report, we first provide an overview of the multidisciplinary approach one has

to adopt to study such a correlation. Incidentally, we build the simple framework of choice:

an implementation of a simple yet very efficient neuron model using Brian — a user-friendly

python simulator for spiking neurons. Then, we focus on the topological structures suspected

to drive this correlation, namely, directed cliques of neurons and build a network where this

correlation can be measured and analyzed using tools from information theory. In particular,

we look at the evolution of mutual information between pairs of neurons within cliques and

break this measure down using the partial information decomposition. The results of our

analysis suggest that when subject to a stimulus, high dimensional cliques transform the

information coming from the stimulus to generate new information reflecting their high

degree of organization.
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1 Introduction

Understanding how the structure of a neural network, formed by the connections between

its neurons, affects its emergent behavior and function has been a major challenge in neu-

roscience. Multiple disciplines have been applied alongside neuroscience to address this

question. In graph theory, for example, researchers have defined several measures describing

a network’s segregation, the degree to which its elements form separate clusters; integration,

the capacity of a network as a whole to become interconnected; or influence, the individual

contribution of some nodes to the network’s structural integrity and information flow (Sporns,

2013). Other measures such as efficiency introduced by Latora and Marchiori (2001) attempt

to describe at the same time both the local and global efficiency of a network to exchange

information. In the context of efficiency, biological neural networks are seen as small-world

networks. Nevertheless, these measures fail to describe most local biological network prop-

erties, such as the different roles of individual neurons or relatively small groups of neurons.

Other attempts, combining dynamical systems and graph theory, try to predict neural network

dynamics via graphical analysis (Morrison and Curto, 2019; Curto et al., 2019, 2018). Although

promising, these results are still constrained to fairly theoretical neural network models that

are far from resembling biological neurons.

More recently algebraic topology (Hatcher, 2002) has been applied to digital reconstructions

of rat neocortical microcircuitry developed by the Blue Brain Project. Reimann et al. (2017)

developed a mathematical framework to analyze both the structural and functional topology

of neural networks that integrates local and global descriptors, thus allowing the authors to

identify a relationship between them. Applying this framework to the digital reconstructions,

the authors found a remarkably high number and variety of specific high dimensional topo-

logical structures, namely directed cliques and cavities. Directed cliques are groups of neurons

that are all-to-all connected and have no cycle, thus having a clear direction for the flow of

information through the neurons, and cavities arise when directed cliques bind appropriately

by sharing neurons, but without forming a larger clique due to missing connections. We

define these structures more formally in section 1.2. This high number of directed cliques and

cavities had never been seen before in biological or artificial neural networks and is far greater
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Introduction

than the numbers found in various null models of directed networks. Furthermore, when

simulating the microcircuit activity in response to sensory stimulus, the authors observed

that pairwise correlations in neural activity increased with the number and dimension of the

directed clique to which a pair of neurons belongs suggesting that correlated activity binds

neurons into high-dimensional active cliques. The main goal of our research will be to further

understand how these topological structures influence emergent dynamics.

In this report, we first provide an introduction to the three disciplines we had to learn to tackle

the challenge of understanding how the brain works and build on the results of Reimann et al.

(2017), namely neuroscience, algebraic topology, and information theory.

Secondly, we present the simple framework of choice, our initiative to combine Izhikevich’s

simple neuron — a simple yet very efficient neuron model — with a user-friendly python

simulator for spiking neurons called Brian. We believe that this framework could be a very

useful tool used by scientists to run elementary simulations and conduct new kinds of analyses

of neural networks. In our case, we use our framework to apply a novel analysis of neural

networks mixing information theory and algebraic topology. Bringing together the benefits

of both Izhikevich’s simple neuron and Brian, our framework is easy to use, computationally

efficient and accurate, and easy to review. It allows scientists to spend most of their time

on tuning the details of their model and performing their novel analysis, rather than on the

intricacies of the implementation of neural network simulations.

Lastly, we examine the local topological structures studied by Reimann et al. (2017), namely

directed cliques of neurons, that are suspected to drive the correlation between the structure

and the function of a neural network. We build networks of isolated cliques of neurons of

increasing dimension which allows us to study more directly the effect of topology on emergent

behavior. As a novel approach to (Reimann et al., 2017), we use tools from information theory

such as mutual information and the partial information decomposition rather than the widely

used Pearson correlation to study the interactions between neurons in a clique. We find

that when subject to a stimulus, high dimensional cliques transform the information coming

from the stimulus to generate new information reflecting their high degree of organization.

Precisely, the information shared by the last neurons in the cliques is initially lower than

the information encoded about the stimulus, however, the former information eventually

outweighs the latter information coming from the stimulus as the dimension of the clique

grows. Furthermore, decomposing this information into four disjoint partial components, we

find that the information generated by the last neurons of the clique is created synergistically

with the information coming from the stimulus, whence our hypothesis that cliques of neurons

transform information coming from a stimulus.
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1.1. Neuroscience

1.1 Neuroscience

The first step in analyzing the relationship between the structure and the function of the brain

is to understand how individual neurons work and how they connect and exhibit complex

behaviors.

1.1.1 Basics: Neurons, Spikes, and Synapses

(a) A neuron (b) A spike

Figure 1.1 – Figures from wikipedia.org

From a computational point of view, a typical neuron consists of three main parts: the soma,

dendrites, and the axon. The soma is the cell body, dendrites are the input ends of the neuron,

and the axon is the output end (Figure 1.1a).

A neuron connects to its neighbors via synapses. At the farthest tip of its axon’s branches are

axon terminals where the neuron, referred to as the presynaptic neuron, can transmit a signal

across the synapse to another cell, referred to as the postsynaptic neuron.

Inputs received by a neuron through the contacts of its dendritic tree produce electrical

currents that change its membrane potential (Figure 1.1b). These changes, resulting from

synaptic currents, are called postsynaptic potentials (PSPs). Small currents produce small PSPs

and larger currents induced from a combination of several other neurons are amplified by

the neuron which generates an action potential or a spike. For regular spiking neurons, this

spiking happens when the input reaches a certain threshold (Figure 1.1b).

The behavior of a single neuron may be easy to predict, but when multiple neurons of various

types connected via various synapses span a large neural network, the emergent behavior of

such network becomes complex and very hard to predict.

A natural question that we had to address early in our research was how could we simulate

a neural network? Which model could we use? Which simplifications could we make? And

which simplifications would lessen the significance of our analysis?

There is a wide spectrum of neuron models studied in the literature. The most complex ones

include the Hodgkin–Huxley model (Hodgkin and Huxley, 1952) which describes neuronal

dynamics in terms of activation and inactivation of voltage-gated conductances and the
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simplest ones include the leaky integrate-and-fire model which can be described with a single

differential equation. Fortunately, we will see in the next section that harmony between

computational simplicity and biological accuracy is achievable.

1.1.2 Simple Model of Choice

In (Izhikevich, 2007), the author provides a dynamical systems perspective on neurons. His

main point is that a neuron should be viewed as a nonlinear dynamical system in addition to

its more common representations in terms of ions and channels by biologists or in terms of

input/output relationships by theoreticians.

The advantage of such a perspective is that a model need not be complex (e.g. with a variable

for each electrophysiological parameter) to be considered accurate. Indeed, in the dynamical

systems approach to neuroscience, the focus is on phase portraits and bifurcations rather than

on equations.

(a) Phase portraits of a neuron in resting, excitable, and periodic spiking activity.

(b) Bifurcation of an equilibrium state leading to the transition from resting to
periodic spiking activity of a neuron.

Figure 1.2 – Phase portrait and bifurcation. Figures 1.9 and 1,12a from (Izhikevich, 2007).

A phase portrait is a sketch used to qualitatively analyze a dynamical system. It depicts

all stable and unstable equilibria (as black and white circles, respectively), representative

trajectories, and corresponding attraction domains in a system’s state. In Figure 1.2a for

example, the resting state (a) of the neuron corresponds to a stable equilibrium (black circle)
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1.1. Neuroscience

since inward and outward currents are balanced and small perturbations or membrane noise

do not affect the state of the neuron. In its excitable state (b) large perturbations such as

the stimulus B are amplified by the neuron and result in a spike. Finally, the injection of a

very strong current in the neuron puts it in its periodic spiking state (c) where the resting

equilibrium becomes unstable (white circle).

Bifurcations denote a qualitative change in the phase portrait of a system. In our example

(Figure 1.2a), going from the resting to the excitable state does not correspond to a bifurcation

since the neuron ends its trajectory at its stable equilibrium. However, there is a bifurcation

going from the excitable to the periodic spiking state, as the equilibrium becomes unstable

and a periodic orbit appears. In addition, Figure 1.2b shows the steps of another type of

bifurcation exhibited by a regular-spiking neuron as we stimulate it with an increasing current.

In this context, a model is valid if it exhibits the same bifurcations as the neuron under

consideration. This way, Izhikevich builds what he calls the simple model of choice for a neuron

by starting with a one-dimensional linear ODE and gradually increasing the complexity of

this model until it becomes the simplest model able to reproduce the neurocomputational

properties of 20 of the most fundamental biological neurons.

At its core, the model:

v̇ = v2 −u + I if v ≥ 1, then (1.1)

u̇ = a(bv −u) v ← c, u ← u +d (1.2)

is a two-dimensional system consisting of a fast variable v and a slower recovery variable u. In

addition, the model has four dimensionless parameters a,b,c, and d which allow the model

to reproduce different dynamics of biological neurons. The variable I is the input received by

the neuron.

From a biological perspective, it is more convenient to use the model in the form:

C v̇ = k(v − vr )(v − vt )−u + I if v ≥ vpeak , then (1.3)

u̇ = a[b(v − vr )−u] v ← c, u ← u +d (1.4)

where the variables can be interpreted as:

Variables Dimensionless parameter Biological / tuning parameters

v : membrane potential a: recovery time constant C : membrane capacitance

u: recovery current b: constant vr : resting membrane potential

c: potential reset value vt : instantataneous threshold potential

d : constant vpeak : spike cutoff

k: constant
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This form is equivalent to 1.1. The parameters C , vr , vt , vpeak , and k are used to fine-tune the

model.

Although a simpler model such as the leaky integrate-and-fire:

v̇ = I − v if v ≥ vpeak then v ← vr eset (1.5)

could be used by mathematicians seeking to prove theorems, Izhikevich considers that this

model is a waste of time for computational neuroscientists who wish to simulate large-scale

networks. Indeed, the integrate-and-fire model does not reproduce the correct bifurcation

in its transition from resting to repetitive spiking. which results in a logarithmic scaling of its

F-I curve (frequency response (F) to different injected current (I)) as opposed to the expected

square-root scaling (Figure 2.1c). In addition, the simple model of choice is less prone to

numerical errors affecting its spike timing since these errors are inversely proportional to the

slope of the membrane voltage at the reset step (Figure 1.3).

Finally, Izhikevich does not consider the integrate-and-fire model as a true spiking model,

since the event of a spike in this model only denotes that the membrane reached the threshold

and was reset. The model cannot generate a fast upstroke (Figure 1.3).

Figure 1.3 – The integrate-and-fire model cannot generate a spike and the slope of its mem-
brane potential near the reset is small. On the contrary the slope near the rest of the simple
model is almost infinite. Figure 8.7 from (Izhikevich, 2007)

This motivates us to use the simple model of choice in our simulations while investigating the

link between the topological complexity and the functional complexity of neural networks.

Moreover, in our attempt to find a convenient simulation software we incidentally build the

simple framework of choice in section 2.1 which is an implementation of the simple model of

choice using Brian (Goodman and Brette, 2009), a user-friendly python simulator for spiking

neurons.
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1.1. Neuroscience

1.1.3 Brian Simulator

Brian (Goodman and Brette, 2009) is a python simulator for spiking neural networks. It is

built with the goal of making the writing of simulation code easy, quick, and flexible. This way,

scientists can focus on the details of their models rather than on their implementation.

In the following, we introduce the basic features and objects of Brian that we use to implement

the simple framework of choice in 2.1.

Defining a model

With Brian, one defines any desired model directly by providing its mathematical definition,

consisting of differential equations and discrete events (the effect of spikes) written in standard

mathematical notation. This is done via the object NeuronGroup (Figure 1.4).

Synapses between neurons can then be added in similar way with the object Synapses, to

which one provides the NeuronGroups to be connected and the model of the synapses. The

details of the connections can then be specified via the method Synapses.connect().

tau = 1*ms # A constant time variable
VT = 0.8 # The threshold value
VR = 0 # The reset value
I = 1 # A constant input
nb_neurons = 10 # The number of neurons

model = ’dV/dt = (I - V)/tau : 1’ # The equation defining the neuron model
threshold = ’V > VT’ # The discrete event triggering a spike
reset = ’V = VR’ # The discrete event to execute after a spike

neurons = NeuronGroup(nb_neurons, model, threshold=threshold, reset=reset)
connections = Synapses(neurons, neurons, on_pre=’V_post += 0.2’)
connections.connect(condition=’i < j’) # The details of the connections

spikemon = SpikeMonitor(neurons) # Record the spike time of each neuron
statemon = StateMonitor(neurons, ’V’) # Record the evolution of the variable V for each neuron

run(100*ms) # Run the simulation

Figure 1.4 – Illustration of the basic objects of Brian with the definition of a network of 10
leaky integrate-and-fire neurons ’dV/dt = (I - V)/tau’. The connection condition ’i < j’ allows to
connect the neurons to form a directed clique.

Running and recording a simulation

Once neurons and synapses are defined, a SpikeMonitor and StateMonitor can be added

to the network to record respectively the spike timing of each neuron and the time evolution

of any variable defined in the neuron model (Figure 1.4).

When every variable is defined a simple call to the function run(duration), with the

duration of the simulation as an argument, is enough to run and record the simulation.

In our information-theoretic analysis we leverage the decorator @network_operation to
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regularly run a user-defined python function that allows us to flush the data recorded in a time

bin and initialize the containers of the following one.

The reader can refer to Stimberg et al. (2019) for a more comprehensive presentation and

review of the capabilities of Brian.

1.1.4 Next Level: The Blue Brain Project

The Blue Brain Project was founded in 2005. Its goal is to build biologically detailed digital

reconstructions and simulations of the rodent brain and, ultimately, the human brain.

In (Markram et al., 2015), the authors present a digital reconstruction of the microcircuitry of

rat somatosensory cortex built at the Blue Brain Project. In this reconstruction neurons are

positioned in a three-dimensional virtual volume respecting experimentally observed data,

they are objectively classified into 55 morphological cell types, and they are modeled using

the Hodgkin-Huxley equation. Moreover, connections between the neurons happen where

their dendrites touch each other in the virtual space and when other constraints are satisfied.

The synaptic transmission is also modeled integrating extensive experimental data. That

is to say, this reconstruction closely resembles the biological tissue in terms of the number,

types, and densities of neurons and their synaptic connectivity. Furthermore, simulations of

this reconstruction reproduce multiple emergent experimental behaviors without specific

parameter tuning.

This reconstruction allows for novel analysis in the field of neuroscience to happen such

as (Reimann et al., 2017) and enables the formulation of detailed predictions of behaviors

experimentally not observed yet. To date, The Blue Brain Project has achieved a reconstruction

of the mouse whole-neocortex micro-connectome (Reimann et al., 2019). We believe this is

an incredibly important moment in the history of neuroscience. After years of theory and

experimentation, neuroscience is joining many other sciences and engineering fields in a

phase where predictions are made via simulations and, eventually, where interpretations of

experiments are validated via extensive simulations.
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1.2. Algebraic Topology

1.2 Algebraic Topology

For the last decade, and especially for the past five years, the number of applications of alge-

braic topology in neuroscience has been greatly increasing. For example, algebraic topology

has been used to predict the dynamical regime of a neural network (Bardin et al., 2019) and

has played a key role in building an objective morphological classification of neocortical

pyramidal cells (Kanari et al., 2018, 2019) for which a consensus on the number had not been

reached before.

Such applications promote a continuous improvement of the reconstruction of the neocortical

microcircuitry built by the Blue Brain Project (Markram et al., 2015) as well as better identi-

fication of the relationship between the structural and the functional complexity of neural

networks. Indeed, in (Reimann et al., 2017), the authors developed a mathematical frame-

work to analyze the structural and the functional topology of neural networks and quantify

their complexity. This analysis suggests a correlation between structure and function that we

attempt to identify in section 2.2.

In this section we introduce the fundamental concepts of algebraic topology used in computa-

tional neuroscience such as homology. We also provide an overview of the evolution of the

software tools developed to compute the topological invariants of a network and the chal-

lenges faced in this field. Finally, we mention some applications of topological data analysis

(TDA) in machine learning that may be of interest to our fellow classmates doing machine

learning.

1.2.1 Simplicial Complexes

Figure 1.5 – k-simplices with given orderings. Figure 1 from (Topaz et al., 2015).

One can think of a simplicial complex as a higher dimensional analog of a graph, with its

building blocks referred to as simplices. A 0-simplex and a 1-simplex are the analogs of

respectively a vertex and an edge and a higher dimensional building block formed by n +1

vertices is called an n-simplex, which is geometrically the convex hull of its n + 1 affinely

positioned vertices. e.g. a 2-simplex is a filled triangle, a 3-simplex is a filled tetrahedron,

and so on. An n-simplex formed by the vertices (or 0-simplices) v0, . . . , vn can be denoted by

{v0, . . . , vn}, however, it is convenient 1 to set an ordering of the vertices of such n-simplex,

which will thus be denoted by the ordered set (v0, . . . , vn). A (proper) face of a simplex σ :=
1for the sake of defining homology and associating a directed graph to a simplicial complex.
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(v0, . . . , vn) is a simplex τ with vertices any nonempty (proper) subset of (v0, . . . , vn); it inherits

its ordering naturally from the ordering of σ. The i -th face of σ := (v0, . . . , vn) is the simplex σi

obtained by removing the vertex vn−i .

A simplicial complex is then defined as a collection S of simplices with the property that if a

simplex σ ∈S , then every face of σ is also in S . We write the set of all k-simplices of S as Sk .

Directed graphs give rise to simplicial complexes in a natural way. Precisely, if we consider

a directed graph G = (V ,E), where V is the set of vertices and E is the set of directed edges

consisting of ordered pairs (v1, v2) ∈V ×V , then G can be associated to the simplicial complex

S , where S0 = V and whose n-simplices Sn for n ≥ 1 are the (n +1)-tuples (v0, . . . , vn) of

vertices such that for each 0 ≤ i < j ≤ n, (vi , v j ) ∈ E . In this context, the vertices v0 and vn

are called respectively the source and the sink of the simplex (v0, . . . , vn), as there is an edge

directed from v0 to vi for all 0 < i ≤ n edge directed from vi to vn for all 0 ≤ i < n.

Borrowing the terminology of clique from graph theory denoting a set of vertices that are all-

to-all connected, we use the term directed cliques to refer to ordered sets of vertices (v0, . . . , vn)

that are all-to-all connected such that there is an edge from a vertex vi to another vertex v j

if an only if i < j . It is then straightforward to see that the directed cliques in a graph can

be associated to the simplices in the simplicial complex induced by this same graph. In this

regard, we will use the terms directed clique and simplex interchangeably in this work.

(a) (b) (c)

Figure 1.6 – (a) Simplicial complex. Figure from wikipedia.org. (b) Simplicial complex induced
by a directed graph. Figure by Paweł Dłotko. (c) Directed cliques. Figure S2 from (Reimann
et al., 2017).

1.2.2 Simplicial Homology

Homology serves to measure the "topological complexity" of simplicial complexes via numeri-

cal quantities it induces such as Betti numbers. Homology groups are algebraic objects one can

associate with simplicial complexes, in which context one speaks about simplicial homology.

In what follows, we provide an elementary description of homology and its basic properties as

it is outlined by (Reimann et al., 2017) in section 4.1 The topological toolbox. In a similar way,

we restrict our study to mod 2 simplicial homology.

Denoting F2 the field of two elements and S a simplicial complex, we define Cn(S ,F2) as
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1.2. Algebraic Topology

the F2-vector spaces whose basis elements are the n−simplices σ ∈Sn for each n ≥ 0. These

spaces form the chain complex C∗(S ,F2) := {Cn =Cn(S ,F2)}n≥0.

Figure 1.7 – Chain complexes and homology. (A) A 3-simplex (top) has 2-simplices, 1-simplices,
and 0-simplices as faces. (B) Boundary maps take k-chains to their boundaries. Examples
shown for dimensions 1 through 3. These boundary maps connect the chain groups forming
the chain complex (right). (D) Given the simplicial complex shown at the (left), the three
green cycles are equivalent because they differ by boundary cycles (gold). (E) Examples of
k-cycles for k = 1 (left), k = 2 (middle), and k = 3 (right). For each k we show a non-trivial
(cavity-enclosing) cycle on the left and a trivial cycle on the right. Figure 4 from (Sizemore
et al., 2018)

For each n ≥ 1, we then define the boundary map δn : Cn 7→Cn−1 which maps an n-simplex σ

to the formal sum of its faces δn(σ) =σ0 +σ1 +·· ·+σn . The definition of the boundary map

on the basis elements of Cn then naturally extends to all the elements in Cn . This allows us to

define the homology group Hn(S ,F2) = Ker(δn)/Im(δn+1) for n ≥ 1 and H0(S ,F2) =C0/Im(δ1).

Intuitively it refers to the group formed by elements that are a combination of simplices in a

given dimension forming a "cycle" that is not filled by simplices in a larger dimention, whence

the term cavity. The n-th Betti number βn(S ) of a simplicial complex measures the number

of such cavities formed by simplices of dimension n. It is defined as the the dimension of the

n-th homology group Hn(S ,F2).
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1.2.3 Computing Homology

Computing the homology of a simplicial complex can be translated to a problem of numerical

linear algebra. Denoting |Sn | the the number of n-simplices in a simplicial complex S , the

boundary map δn can be modeled as a (|Sn−1|× |Sn |)-matrix Dn with entries in F2. The n−th

Betti number is then simply given by the equation βn(S ) = null(Dn)− rk(Dn+1).

Despite this straightforward conceptual result, several computational challenges are still to

be addressed. In 2017, the computation of the homology of the simplicial complex induced

by the microcircuit formed by neurons 31,000 neurons was completely out of reach for the

supercomputer of the Blue Brain Project. Shortly after, in (Luetgehetmann et al., 2019), the

authors presented a new computing package, Flagser, that allowed the computation of the

homology of this reconstruction. This package even enabled the approximate computation

of the homology of the Blue Brain Project’s recent reconstruction of a full region of a mouse’s

neocortex having twice as many neurons as the previous reconstruction and over 1.2 trillion

11-dimensional simplices.

1.2.4 Topological Data Analysis in Machine Learning

Anyway, machine learning is just an extension of neuroscience.

— Abel Sagodi

In some cases, it is important to understand the underlying characteristic shapes on the

images of a data set or to have specific feature sets encoding them in order to perform accurate

classifications. In this context, TDA allows us to extract topological features from images that

can be combined with machine learning techniques to form a powerful pipeline leveraging

these characteristic shapes.

For example, Garin and Tauzin (2019) show that TDA techniques provide powerful dimen-

sionality reduction algorithms for images by performing a classification of the MNIST data set

with 5 times fewer features than the grayscale pixel value features. These features come from a

technique called persistent homology which, as homology, extracts the numbers of connected

components, cycles, and cavities (captured by the Betti numbers) as well as their birth and

death during an iterative process called a filtration.

We previously discussed how homology could be applied to directed graphs. In a similar

way, persistent homology can be applied to weighted directed graphs. In addition, persistent

homology can be applied to point clouds via their Vietoris–Rips or Čech construction and to

images via their cubical complex construction.

For a complete introduction to the computation of persistent homology coupled with real-

world applications we suggest (Otter et al., 2017) and for an overview of the evolution of

persistent homology, starting with the first intuition developed 20 years ago to the more

modern categorical point of view, we suggest (Perea, 2018)
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1.3. Information Theory

1.3 Information Theory

Very often, the data studied in neuroscience experiments is multivariate and the interactions

between the variables are nonlinear, not to mention that the set of possible interactions

between variables is very large. Because it can address these challenges, information theory is

a very useful analysis tool in neuroscience.

Indeed, information theory is model-independent, i.e. no hypothesis regarding the structure

of the interactions between the variables is required, it can be applied to any mixture of data

types e.g. data consisting of the state of a square pulse stimulus and the number of spikes of a

neuron in some time interval, and it can detect linear and nonlinear interactions.

Furthermore, Li and Li (2019) provide a proof of the suitability of such measures of information

for neural networks. Using a simplified model of the neuron, with discrete membrane potential,

they were able to prove stochastic stability and the law of large numbers on these measures.

In this section, we introduce the information-theoretic measures we use in section 2.2 to

analyze the effects of topological structure on the interactions between neurons.

1.3.1 Information, Uncertainty, and Entropy

One way 2 to intuitively define information is to say that one variable provides information

about another variable when knowledge of the first, in expectation, reduces uncertainty in the

second 3(Cover and Thomas, 2006). In this perspective, we define entropy as a measure of the

uncertainty contained in a variable.

Precisely, given a discrete random variable X with outcomes x1, . . . , xn , each with probability

p(xi ), we define the entropy H(X ) of X as: (Shannon, 1948; Cover and Thomas, 2006)

H(X ) = ∑
x∈Ω

p(x)l og2

(
1

p(x)

)
, where Ω= {x1, . . . , xn}

Similarly, for two discrete random variables X and Y with outcomes in respectivelyΩX and

ΩY and a joint probability distribution p we can define the joint entropy H(X ,Y ) as: (Cover

and Thomas, 2006)

H(X ,Y ) = ∑
x∈ΩX ,y∈ΩY

p(x, y)log2

(
1

p(x, y)

)
Finally, we can define the conditional entropy, which defines the expected uncertainty in a

variable given the state of another variable. The entropy H(X |Y ) of X conditioned on Y is

2Another way would be to define the self-information of an outcome of a random variable. In this perspective,
entropy would be the expected (self-) information in a variable.

3Precisely, this is what we will define later as mutual information.
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given by: (Cover and Thomas, 2006)

H(X |Y ) = ∑
x∈ΩC ,y∈ΩY

p(x, y)log2

(
1

p(x|y)

)

1.3.2 Mutual Information

Figure 1.8 – Example of mutual information computations. A. Probability distributions for
three models (red, blue, and green). B. their associated mutual information values. In model
1, the X and Y variables are independent, so their mutual information is zero. In model 2,
knowledge of X or Y reduces uncertainty in the state of the other variable to some extent, so
nonzero mutual information is observed. In model 3, X and Y are identical, so their mutual
information is maximal. Figure 4 from (Timme and Lapish, 2018)

Recalling that information is a reduction of uncertainty, we can say that if learning the state

of one variable Y reduces the uncertainty in another variable X in expectation, then the first

variable provides information about the second variable. Since we quantified uncertainty

using entropy, we can also quantify this reduction in uncertainty also in terms of entropy,

which gives a measure for information. We refer to this measure as the mutual information

between X and Y denoted I (X ;Y ), that intuitively quantifies the difference between the

uncertainty H(X ) in X and the remaining uncertainty H(X |Y ) in X given knowledge about Y :

(Cover and Thomas, 2006)

I (X ;Y ) = H(X )−H(X |Y ) = ∑
x∈ΩX ,y∈ΩY

p(x, y)log2

(
p(x, y)

p(x)p(y)

)

Note that the sum in the previous equation is symmetric in X and Y . Indeed, I (X ;Y ) = I (Y ; X ),

whence the name mutual information.

In Figures 1.8 and 1.9 we provide examples of mutual information computed for different

variables and a comparison between a linear analysis method such as correlation and mutual

information which can capture nonlinear interactions.

Similarly, we define the mutual information between two variables X and Y conditioned on a

third variable Z . It is referred to as conditional mutual information and is given by: (Cover
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Figure 1.9 – Example of linear versus nonlinear analysis methods. A. Data for three models
(red, blue, and green) with linear (red) and nonlinear (blue and green) interactions; B. the
associated correlation coefficient and mutual information (MI) values for all three models.
Figure 5 from (Timme and Lapish, 2018)

and Thomas, 2006)

I (X ;Y |Z ) = H(X |Z )−H(X |Y , Z ) = ∑
x∈Ωx ,y∈ΩY

Z∈ΩZ

p(x, y |z)l og2

(
p(x, y |z)

p(x|z)p(y |z)

)

Additionally, we can extend the definition of mutual information to groups of variables. e.g.

for three variables X1, X2, and Y , we can define the mutual information between the pair

(X1, X2) and Y as: (Cover and Thomas, 2006)

I ({X1, X2};Y ) = ∑
x1∈Ωx1 ,x1∈ΩX2

y∈Ωy

p(x1, x2, y)log2

(
p(x1, x2, y)

p(x1, x2)p(y)

)

This is a very helpful tool in neuroscience applications. For example, one could use the

latter formula to compute how much information two neurons can provide together about a

stimulus instead of individually.

Finally, it is important to note that an information-theoretic analysis can identify the ex-

istence of potentially complex interactions between variables in a system, but it does not

provide a characterization of such interactions. Indeed, the result obtained when applying an

information-theoretic measure is a number (in bits) that quantifies some relationship within

the data. Surely, some intuition about how information is computed and what those numbers

in bits mean can lead us to formulate hypotheses about interactions, however, it cannot

directly help us explain those interactions. For example, when we said earlier that we could

compute how much information two neurons can provide together about a stimulus instead

of individually, such measure cannot tell us how these two neurons are interacting together.

Fortunately, Williams and Beer (2010) have introduced partial information decomposition,

which is a way to decompose mutual information between groups of variables into several

intuitive components.
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1.3.3 Partial Information Decomposition

When considering the mutual information I ({X1, X2};Y ) between a pair of variables X1 and

X2 and a third variable Y , the partial information decomposition allows us to decompose

I ({X1, X2};Y ) into four intuitive components: the redundancy R that is the information pro-

vided redundantly by both X1 and X2, the unique information provided by X1 or X2 alone,

respectively U1 and U2, and the synergy S that is the extra information known about Y when

X1 and X2 are known simultaneously. They satisfy the following equations.

I ({X1, X2};Y ) = S(X1, X2;Y )+R(X1, X2;Y )+U1(X1, X2;Y )+U2(X1, X2;Y )

I (X1;Y ) = R(X1, X2;Y )+U1(X1, X2;Y )

I (X2;Y ) = R(X1, X2;Y )+U2(X1, X2;Y )

Noticeably, these equations do not provide a unique definition for each of the partial compo-

nents, in other words, one of the four components has to be defined first. Williams and Beer

(2010) introduced the minimum information which can be interpreted as a measure of the

redundancy. It is defined as:

Imi n({X1, X2};Y ) = ∑
y∈ΩY

min
{X1,X2}

[ ∑
xi∈ΩXi

p(xi , y)log2

(
p(xi , y)

p(xi )p(y)

)]

The partial information decomposition allows us to understand interactions between groups

of neurons better and in section 2.2 it helps us detect complex interactions between neurons

forming specific topological structures.

Figure 1.10 – A. Partial information interpretations in three example systems: B.Purely redun-
dant system: the X variables provides the same amount of information about each state of Y.
C. Purely synergistic system: the X variables alone provide no information about Y, however
they do together via a nonlinear operation (Op). D. Purely unique system: Only X1 provides
information about Y. Figure 7 from (Timme and Lapish, 2018)

1.3.4 An Illustration: Stimulus Encoding by a Single Neuron

In the last part of this section, we present a very simple example inspired by (Timme and

Lapish, 2018) of how one can apply information theory to data from neuroscience experiments.
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This example represents a building block to our information-theoretic analysis in section 2.2.

The experiment consists of one square pulse applied to a single neuron. The data recorded

consists of the number of spikes of the neuron in each time bin together with the state of the

stimulus. Repeating the experiment multiple times, we can build a probability distribution

from the data. We use this distribution to measure how the neuron encodes the stimulus,

computed via the mutual information between the number of spikes of the neuron and the

state of the stimulus.

In Figure 1.11a, we clearly observe a difference of spiking frequency of the neuron when the

stimulus is active. This difference results in almost disjoint marginal distributions of the

number of spikes of the neuron when the stimulus is inactive (I = 0) compared to when it is

active (I = 500) (Figure 1.11c). Therefore, the mutual information between the two variables is

very high, and can be translated into a high encoding of the stimulus by the neuron (Figure

1.11b).

(a) (b) (c)

Figure 1.11 – (a) Membrane potential of the neuron and the amplitude of the stimulus. (b)
Stimulus encoding by the neuron.(c) Distribution of the number of spikes of the neuron.
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2 Results

2.1 The Simple Framework of Choice

2.1.1 Motivation

Motivated by the combination of simplicity and power in both Izhikevich’s neuron (Izhikevich,

2007) and the Brian simulator (Goodman and Brette, 2009), we take the initiative to build the

simple framework of choice, an implementation of the simple model of choice using Brian.

This framework provides a simple and powerful elementary tool to be used by scientists who

wish to conduct a new kind of analysis (e.g. topological, information-theoric, ... ) of neural

network simulation.

2.1.2 Implementation

The implementation is straightforward thanks to the user-friendliness of Brian and the sim-

plicity of Izhikevich’s neuron. To implement a regular-spiking neuron, for example, one need

only define the parameters of the model:

def dummy_neuron_of_choice():
# Model’s dimentionless parameters
a = 0.03; b = -2; c = -50; d = 100
# Neuron’s biological parameters
vr = -60; vt = -40; vpeak = 35; C = 100; k = 0.7

write the two-dimentional differential equation of Izhikevich’s neuron and its reset condition:

model = ’’’ dv/dt = (k*(v-vr)*(v-vt) - u)/(C*tau) : 1
du/dt = a*(b*(v - vr) - u)/tau : 1 ’’’

reset = ’’’ v = c
u += d ’’’

peak_threshold = ’v>vpeak’

and give these variables as an input to the NeuronGroup Brian object:

neuron = NeuronGroup(1, model, threshold=peak_threshold, reset=reset, method=’euler’)

In Figure 2.1a, we plot the membrane potential of this regular-spiking neuron when excited

19



Results

(a) (b) (c)

Figure 2.1 – (a) Simple model receiving a constant input I. (b) Raster plot of neurons with
increasing input strength. (c) Comparison of the F-I curve of the simple model versus the
leaky integrate-and-fire model

with a constant input. In 2.1c we plot its firing rate in response to an increasing current input

and compare it to the firing rate of the leaky integrate-and-fire. Consistent with what we said in

the introduction, Izhikevich’s model exhibits a square-root scaling while the integrate-and-fire

model exhibits a logarithmic one. The full implementation of the model and the code to

generate these plots can be found in A.1.

In what follows, we first use our implementation of the simple model to reproduce funda-

mental neurocomputational properties of biological neurons. Then, we run a large-scale

simulation to demonstrate the benefits of our framework.

2.1.3 Reproducing Biological Neurocomputational Properties

In Figure 2.2, we reproduce 16 of the most fundamental neurocomputational properties of

biological neurons by varying the four dimensionless parameters of the simple model of

choice. Our framework is thus suitable for simulating a wide range of neural networks.

As an illustration, we use it in the next section (2.1.4) to simulate a network of 1000 neurons,

similar to networks in mammalian cortexes, comprised of regular-spiking excitatory neurons

and fast-spiking inhibitory neurons.

2.1.4 A Large-Scale Simulation

In this section, we reproduce the simulation used by Izhikevich (2003) to demonstrate the

computational efficiency of his model. We use it as an example to show how one can use the

framework and to demonstrate not only the computational efficiency of our framework but

also its user-friendliness and handiness for neuroscientists.
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Figure 2.2 – The simple model used to reproduce 16 of the most fundamental neurocomputa-
tional properties of biological neurons. Inspired by Figure 8.8 from Izhikevich (2007).

The network consists of 1000 neurons. 800 of which are modeled with a regular-spiking model

and produce excitatory connections. The other 200 neurons are modeled with a fast-spiking

model and produce inhibitory connections (Figure 2.3b). Randomization of the specific

dynamics of each neuron is also applied to achieve heterogeneity. (Details of the simulation

can be found in A.1).

Synapses are modeled with an instantaneous change in the membrane potential of the post-

synaptic neuron. The value of this change is chosen randomly from a uniform distribution

for each synapse. Inhibitory synapses are taken to be twice as strong as the excitatory ones.

Additionally, each neuron receives a noisy input (applied directly to its membrane) following a

normal distribution.
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This setting is similar to the mammalian cortex in which the ratio of excitatory to inhibitory

connection is 4 to 1 and inhibitory connections are stronger. Furthermore, the noisy input

received by each neuron represents the noisy thalamic input.

(a) Simulation of a network of 1000 randomly coupled spiking
neurons. Top: spike raster shows episodes of alpha and gamma
band rhythms (vertical lines). Bottom: typical spiking activity of
an excitatory neuron. Reproduced from (Izhikevich, 2003).

(b) Regular-spiking model vs fast-spiking
model when stimulated with a constant
input.

Figure 2.3

The simulation yields Figure 2.3a, in which we can observe cortical-like asynchronous dynam-

ics: neurons seem to fire Poisson spike trains of mean firing rate equal to 8 Hz. Moreover,

neurons occasionally fire synchronously at frequencies of 10 or 40 Hz. These synchronous

firings are pictured by the dark vertical lines and represent alpha and gamma waves observed

in the mammalian cortex in its awake state.

It is quite admirable that such a network with a fairly simple model of neurons, random

connections, and no synaptic plasticity is able to reproduce complex biological dynamics.

Indeed, Izhikevich is proud to say in his paper (Izhikevich, 2003) that thanks to his model,

there is no longer a contradiction between biological plausibility and computational efficiency

of model neural networks.

We would say that our framework makes this assertion even more true thanks to the power

of the Brian package that, for instance, allows its users to define complex models of plastic
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synapses while maintaining a computationally efficient implementation.

Furthermore, we wish to emphasize on the user-friendliness and handiness of our framework.

To illustrate such characteristics, we compare the code we used to produce this simulation

using our framework against the original code written by Izhikevich. We have translated the

original MATLAB code to Python code for a more direct comparison.

Looking at the declaration of the neuron models and the synapses (Tables 2.1 and 2.2), one

may have the first impression that the Brian code is clearly longer, however, by looking at the

section of the code used to run the simulation (Table 2.3), one is happily surprised to find out

that in the Brian code, the complex machinery needed track spikes and perform the numerical

integration is abstracted away.

Plain Python (Izhikevich)

# Excitatory neurons Inhibitory neurons
Ne = 800; Ni = 200
re = np.random.rand(Ne); ri = np.random.rand(Ni)
a = np.concatenate([0.02*np.ones(Ne), 0.02+0.08*ri])
b = np.concatenate([0.2*np.ones(Ne), 0.25-0.05*ri])
c = np.concatenate([-65+15*re**2, -65*np.ones(Ni)])
d = np.concatenate([8-6*re**2, 2*np.ones(Ni)])

Simple Framework of Choice (Brian)

Ne = 800
excitatory_eq = ’’’

re : 1
a = 0.02 : 1 (shared)
b = 0.2 : 1 (shared)
c = -65 + 15*re**2 : 1
d = 8 - 6*re**2 : 1

dv/dt = (0.04*v**2 + 5*v + 140 - u)/tau
+ 5*sigma*xi*sqrt(1/tau) : 1

du/dt = a*(b*v - u)/tau : 1 ’’’

reset = ’’’ v = c
u += d ’’’

vpeak = 30
peak_threshold = ’v>vpeak’

excitatory_group = NeuronGroup(
Ne, excitatory_eq, threshold=peak_threshold,
reset=reset, method=’euler’)

excitatory_group.re = ’rand()’

excitatory_spikemon =\
SpikeMonitor(excitatory_group)

Ni = 200
inhibitory_eq = ’’’

ri : 1
a = 0.02 + 0.08*ri : 1
b = 0.25 - 0.05*ri : 1
c = -65 : 1 (shared)
d = 2 : 1 (shared)

dv/dt = (0.04*v**2 + 5*v + 140 - u)/tau
+ 2*sigma*xi*sqrt(1/tau) : 1

du/dt = a*(b*v - u)/tau : 1 ’’’

reset = ’’’ v = c
u += d ’’’

vpeak = 30
peak_threshold = ’v>vpeak’

inhibitory_group = NeuronGroup(
Ni, inhibitory_eq, threshold=peak_threshold,
reset=reset, method=’euler’)

inhibitory_group.ri = ’rand()’

inhibitory_spikemon =\
SpikeMonitor(inhibitory_group)

Table 2.1 – Declaration of the neuron models

The Brian code is indeed longer, but it is more readable and quicker to write. These are the

benefits of using the Brian package in our framework.

More precisely, in our framework the forward Euler integration is abstracted away via the

argument method=’euler’ in the definition of the NeuronGroup. On the contrary, the dec-

laration of the neuron groups and synapses is explicit: instead of concatenating the values

of the parameters of the inhibitory neurons after the excitatory ones and making sure they
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Plain Python (Izhikevich)

# Excitatory neurons Inhibitory neurons
S = np.concatenate([0.5*np.random.rand(Ne+Ni,Ne), -np.random.rand(Ne+Ni,Ni)], axis=1)

Simple Framework of Choice (Brian)

S_EtoE = Synapses(excitatory_group, excitatory_group, ’w : 1’, on_pre=’v_post += 0.5*w’)
S_EtoE.connect()
S_EtoE.w = ’rand()’

S_EtoI = Synapses(excitatory_group, inhibitory_group, ’w : 1’, on_pre=’v_post += 0.5*w’)
S_EtoI.connect()
S_EtoI.w = ’rand()’

S_ItoI = Synapses(inhibitory_group, inhibitory_group, ’w : 1’, on_pre=’v_post -= 1*w’)
S_ItoI.connect()
S_ItoI.w = ’rand()’

S_ItoE = Synapses(inhibitory_group, excitatory_group, ’w : 1’, on_pre=’v_post -= 1*w’)
S_ItoE.connect()
S_ItoE.w = ’rand()’

Table 2.2 – Declaration of the synapses

Plain Python (Izhikevich)

for t in range(1,1000): # simulation of 1000 ms
I = np.concatenate([5*np.random.randn(Ne), 2*np.random.randn(Ni)]) # thalamic input
fired = np.nonzero(v >= 30)[0] # indices of spikes
firings.extend(fired)
firing_times.extend(t + 0*fired)
v[fired] = c[fired]
u[fired] = u[fired] + d[fired]
I = I + np.sum(S[:,fired], axis=1)
v = v + 0.5*(0.04*v**2 + 5*v + 140 - u + I) # step 0.5 ms
v = v + 0.5*(0.04*v**2 + 5*v + 140 - u + I) # for numerical
u = u + a*(b*v - u) # stability

Simple Framework of Choice (Brian)
run(1000*ms)

Table 2.3 – Code needed to run the simulation

are aligned for each parameter (Plain Python), a user of our framework can define these pa-

rameters independently for each type of neuron. In addition, the declaration of the synapses

is unfolded and divided into categories. Most importantly, the events of spiking, resetting

membrane potentials, or activating synapses are each defined, handled, and recorded by their

respective Brian object. This liberates scientists from implementing a loop and in which they

have to write the code to approximate the evolution of the simulation and the code to find and

record its important events. As the simulation gets more complex, with more neuron types

and more intricate connectivity, this code becomes more and more prone to bugs and harder

to write.

Indeed, the average scientist wishing to simulate a neural network should not be concerned

about learning the intricacies of computer simulations. First, because they should spend most

of their time on the details of their network rather than the details of its implementation. And

second, because the Brian simulator will produce a computationally more efficient version
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anyway.

Trained as a computer scientists to write good code, I have noticed that most of the code that

researchers in neuroscience write to produce their simulations and plot their figures is very

often lost forever and not reused. If not, it is for instance uploaded on GitHub with a mention

"Lacks documentation. Provided for transparency and reproducibility". We hope that our

framework will, in accordance with the spirit of Brian, help scientists more easily write code

for simulating neural networks, encourage them to share this code with their community, and

facilitate its review by other scientists.
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2.2 Cliques of Neurons Create and Transform Information

2.2.1 Motivation

In (Reimann et al., 2017), the authors investigate how the local topological structure organizes

the activity of neurons. They examine spike correlations between pairs of neurons within

individual cliques and study how these correlations vary as the number of neurons forming

the clique increases (Figure 2.4). They found that all correlations increased with simplex

dimension and that some pairs, characterized by their position in the simplex when ordered

from source to sink, were consistently more correlated than the others. Precisely, they focus

on the pair consisting of the first (source) and last (sink) neurons (2.4:purple) which share the

highest number of indirect connections, the pair consisting of the last (sink) and second-to-

last neurons (2.4:red) which have the highest number of shared inputs, and the pair consisting

of the first and the second neurons (2.4:green) which have the lowest number of shared inputs

and indirect connections. The pair with the last two neurons in the simplex was the one

scoring the highest correlation. This suggests that shared input generates more of the pairwise

correlation in spiking than indirect connections in directed simplices.

In the section, we aim to better understand what makes this difference in correlation and what

it can tell us about the role of local connectivity in shaping neural activity. To do so, we build

a network consisting of an isolated clique of neurons and replace correlation as our studied

measure by mutual information. We describe the details of our method in 2.2.2 and present

our results in 2.2.3 and 2.2.4.
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Figure 2.4 – Mean correlation coefficient of pairs of neurons, given their position within a
simplex and its dimension. Figure 4.E from (Reimann et al., 2017)

2.2.2 Implementation: Isolating Cliques of Neurons in a Network

Using our simple framework (Section 2.1), we consider networks of n Izhikevich regular

spiking neurons with parameters summarized in Table 2.4. The neurons receive a noisy input

following a random distribution (making them fire about 0.8 times in 50 ms). We connect all

the neurons together to form a directed clique, or precisely, an n −1-simplex. All synapses are

excitatory and are modeled by a constant depolarization of magnitude w in the postsynaptic

neuron membrane. In addition, we apply a stimulus consisting of a square pulse of amplitude
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500 pA to only the source of the simplex. We simulate this network during 1000 ms, performing

Ntrials trials with the stimulus On between t = 250 ms and t = 750 ms and Off the rest of the

time and Ntrials trials with the stimulus always Off.

For each trial, we count the number of spikes of each neuron in time intervals of size tbin

ms and construct poststimulus time histograms (PSTHs) for each neuron. We use these

histograms to build a joint probability distribution for each time bin describing the state of the

stimulus and the number of spikes of each neuron and we use these distributions to conduct

our information-theoretic analysis. Precisely, the distribution at bini gives the probability of

the event (y, x0,k , x1,k , . . . , xn−1,k ) happening, where y is the state of the stimulus (On, Off) and

xi ,k denotes the number of spikes of neuron i in the time bin k. The majority of the measures

we used were computed with the python package dit (G. James et al., 2018).

By default we take w = 10 mV which makes a neuron fire when it receives about 2 or 3 excitatory

postsynaptic potentials (EPSP) and tbin = 50 ms. For this pair of values we can fit a full trail

of spikes by all the neurons in the clique in one time bin (Figure 2.5). Moreover, we take

Ntrials = 500 which provides sufficiently accurate distributions. For additional control we also

consider w ∈ {5,7,12,15,20,25}and tbin ∈ {10,25,100} (See A.2).

The code to generate the observations can be found in A.2.

Parameter Value
C 100
vr -60
vt -40

vpeak 35
k 0.7
a 0.03
b -2
c -50
d 100

Table 2.4 – Neuron
model parameters

Figure 2.5 – Raster plot of a clique of 15 neurons for w = 10, tbi n =
50ms

2.2.3 Cliques Create Information

We first examine the encoding of the stimulus by each of the neurons 2.6. To measure it, we

compute the mutual information between the state of stimulus and the number of spikes per

time bin of each neuron. We observe that the first neuron (source) almost perfectly encodes

the stimulus. This is expected since it receives the stimulus directly. The other neurons also

encode the stimulus, though to a lesser degree. These values increase with w (Figure 2.6)

and if we were to rank the level of encoding by the neurons according to their position in the

simplex (except the source), it would be decreasing (last neuron encodes best) for low values

27



Results

of w and increasing (second neuron encodes best) for high values of w . Indeed, for low values

of w , a single synapse is not strong enough to communicate the stimulus directly. Thus, the

last neurons that receive the most input encode the stimulus best. For high values of w , a

single synapse is enough to transmit the stimulus and more synaptic input actually creates

noise, which results in a better stimulus encoding for neurons closer to the source.

(a) w = 10 (b) w = 15 (c) w = 30

Figure 2.6 – Stimulus encoding in a clique of 10 neurons for various values of w

Second, inspired by Reimann et al. (2017), we examine the mutual information between the

same pairs of neurons that the authors studied, namely, the pairs consisting of the first (source)

and the second neurons (2.4:green), the first and the last (sink) neurons (2.4:purple), and the

second-to-last and the last neurons (2.4:red). We obtain a rather different plot (Figure 2.7)

from the one in (Reimann et al., 2017) shown in (Figure 2.4).

The first difference is that the mutual information is not increasing for the three pairs of

neurons. Indeed, the pair consisting of the first (source) and second neuron exhibits a constant

mutual information as the dimension of the simplex increases (green curve). This is consistent

with our network since no change happens at the level of the first and second neurons as the

dimension of the simplex increases. Actually, since in (Reimann et al., 2017) the correlation

between this pair of neurons is increasing, the former argument suggests that simplices of

higher dimensions are involved in a higher organized activity.

The second difference is that the last neuron (sink) shares a mutual information that is higher

with the first neuron (source) than with second-to-last neuron for simplices of dimension less

than 5 (purple curve vs red curve). The first key point that can help us justify this difference, is

that the cliques we study in our network are isolated. That is, although some noise is applied

to each neuron, the only input affecting the network is the stimulus directly applied to only

the first neuron. Hence, at first glance, one can conjecture that the only information that

can be shared between a pair of neurons must be information about the stimulus. Therefore,

since the two neurons that best encode the stimulus are the source and the sink, this pair of

neurons should have the highest mutual information. This may indeed hold for dimensions

lower than 5, however, as the dimension of the simplex increases beyond 5, the mutual

information between the sink and the neuron before the sink becomes significantly greater

than that between the source and the sink. To understand this intersection, we look at the
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mutual information between the different pairs at different time bins (Figure 2.7 b, c, and

d). We observe that in dimension 4 (b), the mutual information between the source and the

sink is significantly higher in the bins 5 to 14 during which the stimulus is playing a role.

This supports our conjecture that the stimulus is the main source of difference in mutual

information. However, in dimension 7 (b), the red and purple curves are almost equal when

the stimulus is active and that the two curves differ in bins 0 to 4 and 15 to 19, that is, when the

stimulus is always off. Eventually, by dimension 10, the mutual information between the last

and second-to-last neurons becomes greater than that of the other pairs in all the time bins.

These observations suggest information is somehow generated between the final neurons

in high dimensional simplices and that this information eventually outweighs that coming

from the stimulus, leading us to reject our previous conjecture. A potential candidate for this

information is the information about the growing organization between the last neurons.

(a) Average mutual informa-
tion in different dimensions

(b) Simplex of dimension 4 (c) Simplex of dimension 7 (d) Simplex of dimension 10

Figure 2.7 – Mutual information between pairs of neurons in a simplex

Furthermore, we can test this new hypothesis by computing the mutual information between

the pairs of neurons conditioned on the state of stimulus, thus eliminating the effects of the

stimulus in our analysis. We obtain (Figure 2.8 (a)) in which the red curve is always above the

purple curve, supporting the hypothesis that the information shared by the last two neurons

in the simplex does not come from the stimulus. In addition, we can observe that the three

curves are almost constant during all the time bins for different dimensions (Figure 2.8 b, c,

and d) confirming that the information from the stimulus is discarded. The plot in dimension

10, also shows an increase of the mutual information between the last two neurons from bin 0

to bin 2 illustrating the increase of the information generated by the simplex at the beginning

of the simulation.

We have thus come closer to the conclusion that new information in created within high

dimensional cliques of neurons that could reflect their high degree of organization.

2.2.4 Cliques Transform Information

Building upon the hypothesis developed in the previous section which states that new infor-

mation is created within high dimensional cliques of neurons, we aim to investigate how this

information is generated.
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(a) Average conditional mu-
tual information in different
dimensions

(b) Simplex of dimension 4 (c) Simplex of dimension 7 (d) Simplex of dimension 10

Figure 2.8 – Mutual information between pairs of neurons in a simplex conditioned on the
stimulus state

To do so, we apply the partial information decomposition framework described in 1.3.3.

Precisely, we now consider the mutual information between the couple (stimulus, first element

of a pair) and the second element of the pair. We then decompose the information coming

from the couple (stimulus, first element of a pair) into four distinct components forming

the partial information decomposition: The redundant information, the unique information

coming from the stimulus, the unique information coming from the first element of the pair

of neurons, and the synergistic information generated by the couple. As a measure of the

redundancy, we use the minimum information (Imi n).

Figure 2.9 – Partial information decomposition applied in a clique of 7 neurons

In Figure 2.9, we plot the partial information decomposition of the three pairs of neurons we

previously studied. We can observe that in both pairs in which the source neuron is involved

(top right and bottom left), most of the information provided by the stimulus and the source is

redundant (gray curve) and the rest of it comes uniquely from the source. This is not surprising,

30



2.2. Cliques of Neurons Create and Transform Information

the source neuron is transmitting the information it encodes from the stimulus. Hence most of

it is redundant and a small part of it comes from the spiking properties of the neuron. On the

contrary, in the pair consisting of the sink and the neuron before the sink plus the stimulus, we

observe a totally different decomposition. Firstly, in bins 0 to 4 and 15 to 19, the information

unsurprisingly comes uniquely form the second-to-last neuron (black curve). Secondly, and

most remarkably, at bins 5 to 14, when the stimulus is involved, we can observe that there is

no information that comes uniquely from the neuron anymore and that a significant amount

of synergistic information generated by both the stimulus and the second-to-last neuron

together appears. This is what we suggest to be a transformation of the input stimulus by the

clique of neurons.

We then examine independently the evolution of each of the partial information components

when the dimension of the clique increases (Figure 2.10). We observe again that the pairs

involving the source neuron mostly generate redundant information and thus provide no

interesting insights. However, the components of the information shared between the sink

and the neuron before the sink plus the stimulus exhibit some interesting behaviors (red

curves). The unique information coming from the stimulus starts high and then decreases.

The synergistic information increases and then decreases. And the unique information coming

from the second-to-last neuron starts low and then increases. Summing these three behaviors

together, we can more clearly suggest that the information provided by the couple (stimulus,

second-to-last neuron) starts as a unique information coming from the stimulus, then is

transformed into synergistic information, and then becomes uniquely provided by the second-

to-last neuron.

Figure 2.10 – Partial information decomposition by component in different dimensions
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Taking another perspective on this result, we plot the four components together for each pair

of neurons (Figure 2.11). We observe more clearly in the rightmost figure, corresponding

to the last neurons in the clique, an increase of the unique information coming from the

stimulus, followed by its decrease and an increase of the synergistic information, followed

by its decrease and an increase in the information coming uniquely from the second-to-last

neuron, further strengthening our "transformation of information" hypothesis. Moreover, in

very high dimensions, we observe a decrease in the redundant information, and an audacious

claim would be to suggest that the unique information coming from the second-to-last neuron

could actually disguise a further transformation of the information occurring in the last

neurons of the clique. An interesting analysis would be to consider the partial information

decomposition of successive triplets of neurons in the clique.

Figure 2.11 – Partial information decomposition for each pair in different dimensions
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3 Conclusion

3.1 Summary of Main Results

The main goal of our research was to better understand how local topological structures in

a neural network, such as directed cliques of neurons, shape its emergent dynamics. This

was motivated by (Reimann et al., 2017), in which the authors demonstrate the presence of

a remarkably high number and variety of high-dimensional directed cliques of neurons in

digital reconstructions of neocortical microcircuitry and formulate a correlation between

these topological structures and the function of neural networks.

To tackle this question, we first went on an exploration of the multiple disciplines that com-

bined would help us realize our goal. We described the basics of neuroscience from a com-

putational point of view, introduced the concepts of algebraic topology that are currently

contributing to significant progress in the field of neuroscience, and described several tools

from information theory that would make the novelty of our research.

This multidisciplinary exploration made us realize the necessity of building our own framework

to perform the simulations we would need to study our question of interest. Consequently,

as a second step, in section 2.1, we described the simple framework of choice, which was

the framework we succeeded to set up combining Izhikechich’s simple neuron model and

the simulator Brian. Bringing together the benefits of both of these tools, our framework is

user-friendly, computationally efficient and accurate, and easy to review. These are the three

desired characteristics we aimed for to properly introduce our novel information-theoretic

analysis.

Thirdly, leveraging our framework and the tools from information theory we described in our

introduction, we were able to formulate new conclusions about the dynamics of neurons

forming directed cliques. We showed that when subject to a stimulus, high dimensional

cliques transform the information coming from the stimulus to generate new information

reflecting their high degree of organization. Decomposing this information into four disjoint

partial components, we further found that the information generated by the last neurons of
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the clique is created synergistically with the information coming from the stimulus, whence

our hypothesis that cliques of neurons transform information coming from a stimulus.

3.2 Discussion and Future Directions

Generalizing the results described in 2.2 to more general settings would be undoubtedly

premature. Our current results only apply to the specific neural network model we consid-

ered. In particular, we only considered one type of neuron, the regular spiking Izhikevich

neuron, and a fairly simple model of synapses: a constant depolarization of the postsynaptic

neuron. Furthermore, the minimum information Imi n we used for the partial information

decomposition in 2.2.4 is only one candidate among many others. We chose it because it was

the first measure introduced by Williams and Beer (2010) and because it possesses several

advantages over the other measures such as its intuitive definition and its possible extension

to many variables. Nevertheless, the minimum information has also been shown to measure

the redundant amount of information rather than the redundant content, which Harder et al.

(2013) consider not to be a fully satisfactory way to capture the concept of redundancy.

In this regard, we believe that the following directions should be explored to complement and

expand on our results. First, one can test different measures of redundancy and synergy in

the partial information decomposition. Then, one can study the mutual information between

more than pairs of neurons in a clique to further examine how the synergistic information

evolves in the clique. Generalizing the previous idea, one can study the mutual information

between cliques which are faces of bigger cliques to have a broader idea on the interactions

between the local topological structures. Additionally, one could consider global topological

structures and examine the mutual information between cliques forming cavities. As a second

step, one could explore all of the previously described measures of information in simulations

of small biological neural networks such as the C. elegans connectome which has been exten-

sively studied. Finally, it would interesting to apply this novel information-theoretic analysis

to the digital reconstructions of neocortical microcircuitry built by the Blue Brain project.
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A Appendix

A.1 The Simple Framework of choice

https://github.com/skandermoalla/simple-framework-of-choice.

A.2 Cliques of Neurons Create and Transform Information

https://github.com/skandermoalla/it-simplex

(a) tbi n = 50, w = 10

(b) tbi n = 50, w = 5 (c) tbi n = 50, w = 20

(d) tbi n = 20, w = 10 (e) tbi n = 100, w = 10

Figure A.1 – Neuron rasters for different values of w and tbi n
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Appendix A. Appendix

(a) tbi n = 50, w = 10

(b) tbi n = 50, w = 5 (c) tbi n = 50, w = 20

(d) tbi n = 20, w = 10 (e) tbi n = 100, w = 10

Figure A.2 – Mutual information between pairs of neurons for different values of w and tbi n

(a) tbi n = 50, w = 10

(b) tbi n = 50, w = 5 (c) tbi n = 50, w = 20

(d) tbi n = 20, w = 10 (e) tbi n = 100, w = 10

Figure A.3 – Partial information decompositions for different values of w and tbi n
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